计算当前每期还款额,如果小 W 选择提前偿还银行借款,计算提前还款后的每期还 款额。

设投资乙国债的到期收益率为 rd,则:
1020 = 1 000×(1 + 4%×5)×(P/F,rd,3)
(P/F,rd,3)= 0.85
当 rd = 5% 时,(P/F,5%,3)= 0.8638
当 rd = 6% 时,(P/F,6%,3)= 0.8396
用插值法解得:
rd = 5% +(0.85 - 0.8638)÷(0.8396 - 0.8638)×(6% - 5%)= 5.57%
银行借款的有效年利率=(1 + 6%÷2)2- 1 = 6.09%
乙国债的到期收益率 5.57% 小于借款的有效年利率 6.09%,小 W 应选择提前偿还银行借款。
针对问题(2):在已知利率和还款期限的情况下,如果能够计算出提前还款 后剩余期限的还款现值,就能根据年金现值方程式解出剩余期限的每期还款金额。
当前每期还款额= 300 000÷(P/A,3%,10)= 35 169.16(元)
解法一:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,4)+ 60 000×(P/F,3%,4)+ X×(P/A,3%,6)×(P/F, 3%,4)= 300 000(元)
解得:X = 24 092.73(元)
解法二:
设还款后每期还款额为 X 元,则:
35 169.16×(P/A,3%,6)- 60 000 = X×(P/A,3%,6)
解得:X = 24 093.33(元)


甲公司同时投资 A、B 两种证券,投资比例相同。A 证券的期望报酬率为 10%,标准差为 9%; B 证券的期望报酬率为 12%,标准差为 13%。若两个证券的相关系数为 0.4,则该投资组合的期望报酬率和组合标准差是( )。
期望报酬率= 0.5×10% + 0.5×12% = 11%,组合标准差= [(0.5×9%)2+(0.5 ×13%)2+ 2×0.5×0.5×9%×13%×0.4]0.5= 9.27%,选项 C 当选。

此题考查递延年金现值的计算,选项 A、C 属于递延年金的常规解法,选项 B、 D 属于递延年金的扩展解法。对于选项 B,先计算未来现金流量在第 2 年年末的现值:① =1 000×(P/A,10%,10);再计算未来现金流量在第“-1”年年初的现值:②=1 000×(P/A, 10%,10)×(P/F,10%,3);最后计算未来现金流量在 0 时点的现值:③= 1 000×(P/A, 10%,10)×(P/F,10%,3)×(1 + 10%),如图 3-10 所示。对于选项 D,先计算未来现金流量在第“-1”年年初的现值:①-②= 1 000×(P/A,10%,13)- 1 000×(P/A, 10%,3),再计算未来现金流量在0时点的现值:③=(①-②)×(1+10%)= [1 000×(P/A, 10%,13)- 1 000×(P/A,10%,3)]×(1 + 10%),如图 3-11 所示。

当市场利率等于票面利率时,该债券平价发行,到期时间的长短不影响债券价值, 选项 A 当选;假定付息期无限小时,溢价发行的平息债券随着到期时间的缩短,价值逐渐下降,最终等于债券面值,选项 B 当选;对于平息债券来说,随着债券到期时间的缩短, 市场利率变化对债券价值的影响程度越来越小,选项C当选;当市场利率不等于票面利率时, 说明债券并非平价发行,对于非平价发行的债券,发行时间越长,债券价值偏离面值的程度就越大,选项 D 当选。


