期望报酬率=100%×0.2+20%×0.5-70%×0.3=9%;方差=(100%-9%)2×0.2+(20%-9%)2×0.5+(-70%-9%)2×0.3=0.3589;标准差=0.35891/2=0.5991;变异系数=0.5991/9%=6.66。
【注意】本题要求选择的是不正确的选项。


A证券的期望报酬率为15%,标准差为18%,B证券的期望报酬率为18%,标准差为20%。投资于两种证券组合的机会集曲线会向左侧凸出,则下列表述中正确的有( )。
如图所示,由于A、B证券报酬率的机会集曲线向左侧凸出,风险分散化效应较强,会产生比最低风险证券标准差还低的最小方差组合,选项C错误,选项A、B、D正确。

对于两种资产组成的投资组合,下列关于相关系数的表述正确的有( )。
相关系数为+1时,不能分散任何风险;相关系数为0时,可以分散部分非系统风险;相关系数为-1时,能够抵消全部非系统风险;相关系数在0~1之间,随着正相关程度的提高,分散风险的程度逐渐减小;相关系数在0~-1之间,相关程度越低,分散风险的程度逐渐增大。

假定甲、乙两只股票最近4年收益率的有关资料如下:
年份 | 甲股票的报酬率 | 乙股票的报酬率 |
2023 | 6% | 12% |
2022 | 9% | 7% |
2021 | 10% | 6% |
2020 | 7% | 11% |
要求:
甲股票的期望报酬率=(6%+9%+10%+7%)/4=8%
乙股票的期望报酬率=(12%+7%+6%+11%)/4=9%
甲股票期望报酬率的标准差
乙股票期望报酬率的标准差
甲股票的变异系数=1.83%/8%=0.23
乙股票的变异系数=2.94%/9%=0.33
组合的期望报酬率=8%×70%+9%×30%=8.3%
组合期望报酬率的标准差==1.69%

A公司有甲、乙两个投资项目,假设未来的市场销售情况有三种:很好、一般、很差,有关的概率分布和期望报酬率如下表所示:
市场销售情况 | 概率 | 甲项目的期望报酬率 | 乙项目的期望报酬率 |
很好 | 0.2 | 25% | 20% |
一般 | 0.5 | 12% | 9% |
很差 | 0.3 | -5% | 2% |
要求:
甲项目的期望报酬率=0.2×25%+0.5×12%+0.3×(-5%)=9.5%
乙项目的期望报酬率=0.2×20%+0.5×9%+0.3×2%=9.1%
甲项目期望报酬率的标准差
= =10.69%
乙项目期望报酬率的标准差
==6.24%
甲项目期望报酬率的变异系数=10.69%/9.5%=1.13
乙项目期望报酬率的变异系数=6.24%/9.1%=0.69
根据资本资产定价模型:
5%+β甲×(12%-5%)=9.5%,则β甲=0.64
5%+β乙×(12%-5%)=9.1%,则β乙=0.59
甲项目期望报酬率与市场组合期望报酬率的相关系数=0.64×8%/10.69%=0.48
乙项目期望报酬率与市场组合期望报酬率的相关系数=0.59×8%/6.24%=0.76
组合的β值=80%×0.64+20%×0.59=0.63
组合的期望报酬率=80%×9.5%+20%×9.1%=9.42%

