当市场利率等于票面利率时,该债券平价发行,到期时间的长短不影响债券价值, 选项 A 当选;假定付息期无限小时,溢价发行的平息债券随着到期时间的缩短,价值逐渐下降,最终等于债券面值,选项 B 当选;对于平息债券来说,随着债券到期时间的缩短, 市场利率变化对债券价值的影响程度越来越小,选项C当选;当市场利率不等于票面利率时, 说明债券并非平价发行,对于非平价发行的债券,发行时间越长,债券价值偏离面值的程度就越大,选项 D 当选。


某人退休时有奖金 100 000 元,拟选择一项回报比较稳定的投资,希望每个季度能收到 2 000 元补贴生活。那么,该项投资的年收益率应不低于( )。
由于永续年金 P = A÷i,因此 i = A÷P,季度报酬率= 2 000÷100 000 = 2%, 即年有效报酬率=(1 + 2%)4- 1 = 8.24%,所以该项投资的年收益率应不低于 8.24%。

当两种证券的相关系数为“-1”时,投资组合的机会集是一条折线,投资组合的有效集是一条直线,选项 A 不当选。只要当两种证券间的相关系数小于 1,投资组合报酬率标准差就小于各证券投资报酬率标准差的加权平均数,选项 B 不当选。期望报酬率最高的组合是全部投资于收益率和风险最高的证券,此时无法分散风险,期望报酬率和风险最大, 选项 C 不当选。当证券的相关系数足够小时,会出现无效集,此时投资组合的有效集小于机会集,选项 D 当选。

甲公司拟发行一批优先股,按季度永久支付优先股股利,每季度支付的每股优先股股利为 2 元,优先股投资的必要报酬率为 10%,则每股优先股的价值为( )元。
假设季度优先股折现率为 r,则(1 + r)4 - 1 = 10%,r = 2.41%,每股优先股 价值= 2÷2.41% = 82.99(元)。

A 证券的期望报酬率为 12%,标准差为 15%;B 证券的期望报酬率为 18%,标准差为 20%。若投资于两种证券组合的机会集是一条曲线,有效边界与机会集重合,以下结论中 正确的有( )。
由于有效边界与机会集重合,则机会集曲线均为有效集,也就是说在机会集上没有向左凸出的部分,而证券 A 的标准差低于证券 B,所以最小方差组合是全部投资于 A 证券, 选项 A 当选;投资组合的报酬率是组合中各种资产预期报酬率的加权平均数,证券 B 的期 望报酬率高于证券 A,最高期望报酬率组合是全部投资于 B 证券,选项 B 当选;因为有效集为曲线,说明两证券的相关系数小于 1,能够分散风险,选项 C 当选;因为风险最小的投资组合为全部投资于 A 证券,期望报酬率最高的投资组合为全部投资于 B 证券,它们并非同一个组合,选项 D 不当选。

(2023)肖先生拟在 2023 年年末购置一套价格为 360 万元的精装修商品房,使用自有资金 140 万元,公积金贷款 60 万元,余款通过商业贷款获得。公积金贷款和商业贷款期限均为 10 年,均为浮动利率。2023 年年末公积金贷款利率为 4%,商业贷款利率为 6%,均采用等额本息方式在每年年末还款。
该商品房两年后交付,且直接拎包入住。肖先生计划收房后即搬入,居住满 8 年后(2033 年年末)退休返乡并将该商品房出售,预计扣除各项税费后变现净收入 450 万元。若该商品房用于出租,每年年末可获得税后租金 6 万元。
肖先生拟在第 5 年年末(2028 年年末)提前偿还 10 万元商业贷款本金,预计第 5 年年末公积金贷款利率下降至 3%,商业贷款利率下降至 5%。
整个购房方案的等风险投资必要报酬率为 9%。
要求:
公积金年还款金额= 60÷(P/A,4%,10)= 60÷8.1109 = 7.40(万元)
商业贷款年还款金额=(360 - 140 - 60)÷(P/A,6%,10)= 160÷7.3601 = 21.74(万元)
公积金贷款余额= 7.40×(P/A,4%,5)= 7.40×4.4518 = 32.94(万元)
商业贷款余额= 21.74×(P/A,6%,5)- 10 = 21.74×4.2124 - 10 = 81.58(万元)
公积金等额年金= 32.94÷(P/A,3%,5)= 32.94÷4.5797 = 7.19(万元)
商业贷款等额年金= 81.58÷(P/A,5%,5)= 81.58÷4.3295 = 18.84(万元)
公积金还款的净现值= 7.40×(P/A,9%,5)+ 7.19×(P/A,9%,5)×(P/F,9%,5)
= 7.40×3.8897 + 7.19×3.8897×0.6499 = 46.96(万元)
商业贷款还款的净现值= 21.74×(P/A,9%,5)+ [18.84×(P/A,9%,5)+ 10]×(P/F, 9%,5)
= 21.74×3.8897 +(18.84×3.8897 + 10)×0.6499 = 138.69(万元)
每年租金的净现值= 6×(P/A,9%,8)×(P/F,9%,2)
= 6×5.5348×0.8417 = 27.95(万元)
购房方案的净现值= 450×(P/F,9%,10)- 140 - 46.96 - 138.69 + 27.95
= 450×0.4224 - 297.70 = -107.62(万元)
由于该购房方案的净现值小于零,因此购房方案在经济价值上不可行。

