相关系数为+1时,不能分散任何风险;相关系数为0时,可以分散部分非系统风险;相关系数为-1时,能够抵消全部非系统风险;相关系数在0~1之间,随着正相关程度的提高,分散风险的程度逐渐减小;相关系数在0~-1之间,相关程度越低,分散风险的程度逐渐增大。


期望报酬率=100%×0.2+20%×0.5-70%×0.3=9%;方差=(100%-9%)2×0.2+(20%-9%)2×0.5+(-70%-9%)2×0.3=0.3589;标准差=0.35891/2=0.5991;变异系数=0.5991/9%=6.66。
【注意】本题要求选择的是不正确的选项。


对于两种证券组成的投资组合,投资组合的标准差=(A12σ12+A22σ22+2A1A2r12σ1σ2)1/2,等比例投资时,A1和A2均等于0.5。如果相关系数为-1,则σp=|A1σ1-A2σ2|=1%;如果相关系数为1,则σp=A1σ1+A2σ2=11%;如果相关系数为0,则σp=(A12σ12+A22σ22)1/2=7.81%。相关系数为1时,不能分散风险,此时组合标准差最大,σp为11%;相关系数为-1时,风险分散效果最好,此时组合标准差最小,σp为1%。

假定甲、乙两只股票最近4年收益率的有关资料如下:
年份 | 甲股票的报酬率 | 乙股票的报酬率 |
2023 | 6% | 12% |
2022 | 9% | 7% |
2021 | 10% | 6% |
2020 | 7% | 11% |
要求:
甲股票的期望报酬率=(6%+9%+10%+7%)/4=8%
乙股票的期望报酬率=(12%+7%+6%+11%)/4=9%
甲股票期望报酬率的标准差
乙股票期望报酬率的标准差
甲股票的变异系数=1.83%/8%=0.23
乙股票的变异系数=2.94%/9%=0.33
组合的期望报酬率=8%×70%+9%×30%=8.3%
组合期望报酬率的标准差==1.69%


