
由于有效边界与机会集重合,则机会集曲线均为有效集,也就是说在机会集上没有向左凸出的部分,而证券 A 的标准差低于证券 B,所以最小方差组合是全部投资于 A 证券, 选项 A 当选;投资组合的报酬率是组合中各种资产预期报酬率的加权平均数,证券 B 的期 望报酬率高于证券 A,最高期望报酬率组合是全部投资于 B 证券,选项 B 当选;因为有效集为曲线,说明两证券的相关系数小于 1,能够分散风险,选项 C 当选;因为风险最小的投资组合为全部投资于 A 证券,期望报酬率最高的投资组合为全部投资于 B 证券,它们并非同一个组合,选项 D 不当选。

报价利率是指银行等金融机构提供的利率,该利率是包含了通货膨胀的利率,选项 A 不当选;有效年利率=(1 +计息期利率)复利次数- 1,计息期利率=报价利率 ÷ 年复利次数,报价利率不变时,有效年利率随着计息期利率的递减而增加(非线性关系),随着每年复利次数的增加而增加(非线性关系),选项 C、D 不当选。



表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790

(2022)甲基金主要投资政府债券和货币性资产,目前正为 5 000 万元资金设计投资方案。 三个备选方案如下:
方案一:受让银行发行的大额存单 A,存单面值 4 000 万元,期限 10 年,年利率为 5%, 单利计息,到期一次还本付息。该存单尚有 3 年到期,受让价格为 5 000 万元。
方案二:以组合方式进行投资。其中,购入 3 万份政府债券 B,剩余额度投资于政府债券 C。 B 为 5 年期债券,尚有 1 年到期,票面价值 1 000 元,票面利率为 5%,每年付息一次, 到期还本,刚支付上期利息,当前市价为 980 元;该债券到期后,甲基金计划将到期还本付息金额全额购买 2 年期银行大额存单,预计有效年利率为 4.5%,复利计息,到期一次还本付息。C 为新发行的 4 年期国债,票面价值 1 000 元,票面利率为 5.5%,单利计息, 到期一次还本付息,发行价格为 1 030 元;计划持有三年后变现,预计三年后债券价格为 1 183.36 元。
方案三:平价购买新发行的政府债券 D,期限 3 年,票面价值 1 000 元,票面利率为 5%, 每半年付息一次,到期还本。 假设不考虑相关税费的影响。
要求:
设各方案的有效年利率为 r。
方案一:
4 000 + 4 000×5%×10 = 5 000×(1+r)3
解得:r = 6.27%
方案二:
购买债券 C 的金额= 5 000 - 3×980 = 2 060(万元)
购买债券 C 的数量= 2 060÷1 030 = 2(万份)
方案二的终值= 3×1 000×(1 + 5%)×(1 + 4.5%)2+ 2×1 183.36 = 5 806.60(万元)
5 806.60 = 5 000×(1+r)3
解得:r = 5.11%
方案三:
r =(1 + 5%÷2)2 - 1 = 5.06%
方案一的有效年利率最高,有效年利率即为投资收益率,所以选择方案一。

