
预计通货膨胀提高时,无风险报酬率会随之提高,证券市场线的截距为无风险报酬率,所以证券市场线将向上平移,选项 B 当选;证券市场线的横轴表示系统风险,选项 D 当选。

某项目投资之后,预计未来 3 年内不会有现金流入,从第 4 年开始每年年末回收 120 万元, 共持续 5 年。若项目投资要求的报酬率为 6%,则该笔现金流量的现值是( )万元。
该笔现金流量的现值= 120×(P/A,6%,5)×(P/F,6%,3)= 120×4.2124 ×0.8396 = 424.41(万元)。

根据固定增长股利模型:股票期望报酬率=股利收益率+资本利得收益
率,股票价格上升会导致股票期望报酬率下降,选项 A 不当选;资本利得收益率(g)上升会导致股票期望报酬率上升,选项 B 当选;预期现金股利下降会导致股票期望报酬率下降,选项 C 不当选;预期持有该股票的时间对股票期望报酬率没有影响,选项 D 不当选。

流动性溢价理论认为短期债券的流动性比长期债券高,因为债券到期期限越长, 利率变动的可能性越大,利率风险就越高,选项 C 不当选。

此题考查递延年金现值的计算,选项 A、C 属于递延年金的常规解法,选项 B、 D 属于递延年金的扩展解法。对于选项 B,先计算未来现金流量在第 2 年年末的现值:① =1 000×(P/A,10%,10);再计算未来现金流量在第“-1”年年初的现值:②=1 000×(P/A, 10%,10)×(P/F,10%,3);最后计算未来现金流量在 0 时点的现值:③= 1 000×(P/A, 10%,10)×(P/F,10%,3)×(1 + 10%),如图 3-10 所示。对于选项 D,先计算未来现金流量在第“-1”年年初的现值:①-②= 1 000×(P/A,10%,13)- 1 000×(P/A, 10%,3),再计算未来现金流量在0时点的现值:③=(①-②)×(1+10%)= [1 000×(P/A, 10%,13)- 1 000×(P/A,10%,3)]×(1 + 10%),如图 3-11 所示。

甲公司拟投资于两种证券 A 和 B,两种证券期望报酬率的相关系数为 0.4,根据投资 A 和 B 的不同资金比例测算,投资组合期望报酬率与标准差的关系如图 3-9 所示,甲公司可能会选择的投资组合有( )。
XR 曲线是无效集,甲公司不会投资 XR 曲线上的任何组合,选项 D 不当选;RY 曲线是有效集合,是甲公司的选择范围,选项 A、B、C 当选。

