市场利率低于票面利率时,属于溢价发行债券,期限越长,债券价值越高,选项 A 当选;无论是折价、平价或是溢价发行的债券,提高付息频率(缩短计息期),均会使得债券价值上升,选项 B 不当选;市场利率与债券的价值反方向变动,市场利率上升,价值下降,选项 C 不当选;票面利率与债券价值正方向变动,票面利率上升,价值上升,选 项 D 不当选。


报价利率是指银行等金融机构提供的利率,该利率是包含了通货膨胀的利率,选项 A 不当选;有效年利率=(1 +计息期利率)复利次数- 1,计息期利率=报价利率 ÷ 年复利次数,报价利率不变时,有效年利率随着计息期利率的递减而增加(非线性关系),随着每年复利次数的增加而增加(非线性关系),选项 C、D 不当选。

已知某股票与市场组合报酬率之间的相关系数为 0.25,其标准差为 36%,市场组合的标准差为 30%,市场组合的风险报酬率为 12%,无风险利率为 5%,则投资该股票的风险报酬率 为( )。
该股票的 β 系数= 0.25×36%÷30% = 0.3,投资该股票的风险报酬率= 0.3×12% = 3.6%。

甲投资组合由 M 股票和 N 政府债券(假设无风险)组成,投资占比均为 50%,下列说法中, 正确的有( )。(2023)
由于 N 政府债券无风险,其 β 系数、标准差和方差均为 0,则甲的 β 系数= M 的 β 系数 ×50%,甲报酬率的标准差= M 报酬率的标准差 ×50%,甲报酬率的方差=(M 报酬率的标准差 ×50%)2 = M 报酬率的方差 ×25%,选项 A、B 正确,选项 D 错误。甲的期望报酬率= M 的期望报酬率 ×50% + N 的期望报酬率 ×50%,选项 C 错误。

根据股票价值的计算模型,Vs = D0×(1 + g)÷(rs- g),由公式看出,最近一期刚支付的股利 D0,股利增长率 g,与股票价值成同方向变化,选项 A、B 当选;投资要求的必要报酬率 rs 与股票价值成反向变化,选项 D 不当选;由资本资产定价模型可知, 无风险利率与投资要求的必要报酬率成同方向变化,因此无风险利率与股票价值成反方向变化,选项 C 不当选。

表 3-31 给出了在不同经济状况下,股票 A 和股票 B 的可能的收益率和相应的概率。股票 A 和股票 B 的相关系数是 0.3919。
要求(计算结果保留小数点后四位):
股票 A 的期望收益率= 0.3×40% + 0.4×10% + 0.2×(- 8%)+ 0.1×(-50%)= 9.40%
股票 B 的期望收益率= 0.3×23% + 0.4×8% + 0.2×(-5%)+ 0.1×(-25%)= 6.60%
股票 A 的标准差 = [(40% - 9.4%)2×0.3 +(10% - 9.4%)2×0.4 +(-8% - 9.4%)2×0.2 +(-50% - 9.4%)2×0.1]0.5= 0.2635
股票B的标准差= [(23%-6.6%)2×0.3+(8%-6.6%)2×0.4+(-5%-6.6%)2×0.2+(-25% - 6.6%)2×0.1]0.5= 0.1443
组合的期望报酬率= 40%×9.4% + 60%×6.6% = 7.72%
组合的标准差= [(40%×0.2635)2 +(60%×0.1443)2 + 2×40%×60%×0.2635×0.1443 ×0.3919]0.5= 0.1605
组合的变异系数=组合的标准差 ÷ 组合的期望报酬率= 0.1605÷7.72% = 2.0790

