


当两种证券的相关系数为“-1”时,投资组合的机会集是一条折线,投资组合的有效集是一条直线,选项 A 不当选。只要当两种证券间的相关系数小于 1,投资组合报酬率标准差就小于各证券投资报酬率标准差的加权平均数,选项 B 不当选。期望报酬率最高的组合是全部投资于收益率和风险最高的证券,此时无法分散风险,期望报酬率和风险最大, 选项 C 不当选。当证券的相关系数足够小时,会出现无效集,此时投资组合的有效集小于机会集,选项 D 当选。

假设甲、乙证券收益的相关系数接近于零,甲证券的期望报酬率为 6%(标准差为 10%), 乙证券的期望报酬率为 8%(标准差为 15%),则下列关于甲、乙证券构成的投资组合的说法中正确的有( )。
投资组合的期望报酬率等于单项资产期望报酬率的加权平均数,如果把资金 100% 投资于甲证券,组合报期望酬率最低(6%),选项 A 当选;如果把资金 100% 投资于乙证券,组合期望报酬率最高(8%),组合的风险也最大,组合标准差最高(15%),选项 B、 C 当选;相关系数小于 1,投资组合就会产生风险分散效应,且相关系数越小,风险分散效应越强,当相关系数足够小时,投资组合最低的标准差可能会低于单项资产的最低标准差, 选项 D 不当选。

(2023)肖先生拟在 2023 年年末购置一套价格为 360 万元的精装修商品房,使用自有资金 140 万元,公积金贷款 60 万元,余款通过商业贷款获得。公积金贷款和商业贷款期限均为 10 年,均为浮动利率。2023 年年末公积金贷款利率为 4%,商业贷款利率为 6%,均采用等额本息方式在每年年末还款。
该商品房两年后交付,且直接拎包入住。肖先生计划收房后即搬入,居住满 8 年后(2033 年年末)退休返乡并将该商品房出售,预计扣除各项税费后变现净收入 450 万元。若该商品房用于出租,每年年末可获得税后租金 6 万元。
肖先生拟在第 5 年年末(2028 年年末)提前偿还 10 万元商业贷款本金,预计第 5 年年末公积金贷款利率下降至 3%,商业贷款利率下降至 5%。
整个购房方案的等风险投资必要报酬率为 9%。
要求:
公积金年还款金额= 60÷(P/A,4%,10)= 60÷8.1109 = 7.40(万元)
商业贷款年还款金额=(360 - 140 - 60)÷(P/A,6%,10)= 160÷7.3601 = 21.74(万元)
公积金贷款余额= 7.40×(P/A,4%,5)= 7.40×4.4518 = 32.94(万元)
商业贷款余额= 21.74×(P/A,6%,5)- 10 = 21.74×4.2124 - 10 = 81.58(万元)
公积金等额年金= 32.94÷(P/A,3%,5)= 32.94÷4.5797 = 7.19(万元)
商业贷款等额年金= 81.58÷(P/A,5%,5)= 81.58÷4.3295 = 18.84(万元)
公积金还款的净现值= 7.40×(P/A,9%,5)+ 7.19×(P/A,9%,5)×(P/F,9%,5)
= 7.40×3.8897 + 7.19×3.8897×0.6499 = 46.96(万元)
商业贷款还款的净现值= 21.74×(P/A,9%,5)+ [18.84×(P/A,9%,5)+ 10]×(P/F, 9%,5)
= 21.74×3.8897 +(18.84×3.8897 + 10)×0.6499 = 138.69(万元)
每年租金的净现值= 6×(P/A,9%,8)×(P/F,9%,2)
= 6×5.5348×0.8417 = 27.95(万元)
购房方案的净现值= 450×(P/F,9%,10)- 140 - 46.96 - 138.69 + 27.95
= 450×0.4224 - 297.70 = -107.62(万元)
由于该购房方案的净现值小于零,因此购房方案在经济价值上不可行。

甲公司欲投资购买债券,目前是 2022 年 7 月 1 日,市面上有 4 家公司债券可供投资,其基本信息如表 3-32 所示。
其中:A 公司发行的债券每年 6 月 30 日付息一次,到期还本;B 公司发行的债券单利计息,到期一次还本付息;C 公司发行的债券为纯贴现债券,期内不付息,到期还本;D 公司发行的债券每年 12 月 31 日付息一次,到期还本。
要求:
A 债券的价值= 1 000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
A 债券价值 1 084.29 元小于债券价格 1 105 元,所以不应购买。
B 债券的价值= 1 000×(1 + 7×8%)×(P/F,6%,5)= 1 560×0.7473 = 1 165.79(元)
B 债券的价值 1 165.79 元小于债券价格 1 231.3 元,所以不应购买。
C 债券的价值= 1 000×(P/F,6%,5)= 1 000×0.7473 = 747.3(元)
C 债券的价值 747.3 元大于债券价格 600 元,应购买。
D 债券的价值= [80 + 80×(P/A,6%,2)+ 1 000×(P/F,6%,2)]÷(1 + 6%)0.5
= [80 + 80×1.8334 + 1 000×0.8900]÷(1 + 6%)0.5= 1 084.61(元)
D 债券的价值 1 084.61 元等于债券价格,可以购买。
A 债券:
1105 = 1 000×8%×(P/A,i,5)+ 1 000×(P/F,i,5)
当 i = 5% 时:1000×8%×(P/A,5%,5)+ 1 000×(P/F,5%,5)= 80×4.3295 + 1 000×0.7835 = 1 129.86(元)
当 i = 6% 时:1000×8%×(P/A,6%,5)+ 1 000×(P/F,6%,5)= 80×4.2124 + 1 000×0.7473 = 1 084.29(元)
用插值法:
(i - 5%)÷(6% - 5%)=(1 105 - 1 129.86)÷(1 084.29 - 1 129.86)
解得:债券到期收益率= 5.55%
B 债券:
1231.3 = 1 000×(1 + 7×8%)×(P/F,i,5) (P/F,i,5)= 1 231.3÷1 560 = 0.7893
当 i = 5% 时:(P/F,5%,5)= 0.7835
当 i = 4% 时:(P/F,4%,5)= 0.8219
用插值法解得:
债券到期收益率= 4% +(5% - 4%)×(0.7893 - 0.8219)÷(0.7835 - 0.8219)= 4.85%
C 债券:
600 = 1 000×(P/F,i,5) (P/F,i,5)= 0.6
当 i = 10% 时:(P/F,10%,5)= 0.6209
当 i = 12% 时:(P/F,12%,5)= 0.5674
用插值法解得:
债券到期收益率= 10% +(0.6 - 0.6209)÷(0.5674 - 0.6209)×(12% - 10%)= 10.78%
D 债券:
由于价值等于发行价格,所以到期收益率等于必要报酬率 6%。

